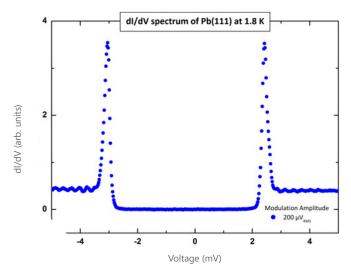

LT-STM/AFM | Scanning Tunneling Spectroscopy Results


Itspm@createc.de | www.createc.de

Scanning Tunneling Spectroscopy (STS) experiments were performed to demonstrate the ultimate performance of our CreaTec LT-STM systems. Therefore, a superconducting Pb(111) single-crystal and a Pb tip were used to measure STS spectra at 1.8 K using the latest CreaTec DSP electronics. The modulation amplitude of the internal CreaTec Lock-In Amplifier was set to very small values in the range of a few μ V, i.e. far below kT, to eliminate the influence of the modulation amplitude. As a consequence, the main contribution to the energy resolution is the temperature of the STM itself.

SPECTRA

Fig. 1: I(V) spectrum clearly showing the superconducting gap in the tunneling current.

Fig. 2: dI/dV spectrum of the same sample at a different modulation amplitude.

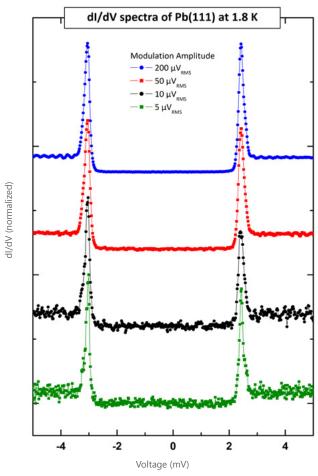


Fig. 3: dI/dV spectra of the same sample at different modulation amplitudes in the range of 5-200 μV (bottom to top).

The spectra are non-averaged single spectra (raw data) recorded with the following parameters:

1024 points/spectrum
15 second/spectrum
Bias Voltage 10 mV
Tunneling Current setpoint 100 pA

 $T=1.8 K (kT=154 \mu eV)$

